Abstract:In this paper we present a spatially-adaptive method for image reconstruction that is based on the concept of statistical multiresolution estimation as introduced in [Frick K, Marnitz P, and Munk A. "Statistical multiresolution Dantzig estimation in imaging: Fundamental concepts and algorithmic framework". Electron. J. Stat., 6:231-268, 2012]. It constitutes a variational regularization technique that uses an supremum-type distance measure as data-fidelity combined with a convex cost functional. The resulting convex optimization problem is approached by a combination of an inexact alternating direction method of multipliers and Dykstra's projection algorithm. We describe a novel method for balancing data-fit and regularity that is fully automatic and allows for a sound statistical interpretation. The performance of our estimation approach is studied for various problems in imaging. Among others, this includes deconvolution problems that arise in Poisson nanoscale fluorescence microscopy.
Abstract:In this paper we are concerned with fully automatic and locally adaptive estimation of functions in a "signal + noise"-model where the regression function may additionally be blurred by a linear operator, e.g. by a convolution. To this end, we introduce a general class of statistical multiresolution estimators and develop an algorithmic framework for computing those. By this we mean estimators that are defined as solutions of convex optimization problems with supremum-type constraints. We employ a combination of the alternating direction method of multipliers with Dykstra's algorithm for computing orthogonal projections onto intersections of convex sets and prove numerical convergence. The capability of the proposed method is illustrated by various examples from imaging and signal detection.