for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Data in the natural sciences frequently violate assumptions of independence. Such datasets have samples with inherent clustering (eg by study site, subject, experimental batch), leading to spurious associations, poor model fitting, and confounded analyses. While largely unaddressed in deep learning, this problem has been handled in the statistics community through mixed effects models. These models separate cluster-invariant, population-level fixed effects from cluster-specific random effects. We propose a general-purpose framework for Adversarially-Regularized Mixed Effects Deep learning (ARMED) models through three non-intrusive additions to existing neural networks: 1) a domain adversarial classifier constraining the original model to learn only cluster-invariant features, 2) a random effects subnetwork capturing cluster-specific features, and 3) an approach to apply random effects to clusters unseen during training. We apply ARMED to dense feedforward neural networks, convolutional neural networks, and autoencoders on 4 applications including classification of synthesized nonlinear data, dementia prognosis and diagnosis, and live-cell microscopy image analysis. We compare to conventional models, domain adversarial-only models, and the inclusion of cluster membership as an input covariate. ARMED models better distinguish confounded from true associations in synthetic data and emphasize more biologically plausible features in clinical applications. They also quantify inter-cluster variance in clinical data and can visualize batch effects in cell images. Finally, ARMED improves accuracy on data from clusters seen during training (up to 28% vs conventional models) and generalization to unseen clusters (up to 9% vs conventional models). By incorporating powerful mixed effects modeling into deep learning, ARMED increases interpretability, performance, and generalization on clustered data.
Abstract:Currently, the diagnosis of Autism Spectrum Disorder (ASD) is dependent upon a subjective, time-consuming evaluation of behavioral tests by an expert clinician. Non-invasive functional MRI (fMRI) characterizes brain connectivity and may be used to inform diagnoses and democratize medicine. However, successful construction of deep learning models from fMRI requires addressing key choices about the model's architecture, including the number of layers and number of neurons per layer. Meanwhile, deriving functional connectivity (FC) features from fMRI requires choosing an atlas with an appropriate level of granularity. Once a model has been built, it is vital to determine which features are predictive of ASD and if similar features are learned across atlas granularity levels. To identify aptly suited architectural configurations, probability distributions of the configurations of high versus low performing models are compared. To determine the effect of atlas granularity, connectivity features are derived from atlases with 3 levels of granularity and important features are ranked with permutation feature importance. Results show the highest performing models use between 2-4 hidden layers and 16-64 neurons per layer, granularity dependent. Connectivity features identified as important across all 3 atlas granularity levels include FC to the supplementary motor gyrus and language association cortex, regions associated with deficits in social and sensory processing in ASD. Importantly, the cerebellum, often not included in functional analyses, is also identified as a region whose abnormal connectivity is highly predictive of ASD. Results of this study identify important regions to include in future studies of ASD, help assist in the selection of network architectures, and help identify appropriate levels of granularity to facilitate the development of accurate diagnostic models of ASD.
Abstract:Parkinson's disease (PD) is a common neurological disorder characterized by gait impairment. PD has no cure, and an impediment to developing a treatment is the lack of any accepted method to predict disease progression rate. The primary aim of this study was to develop a model using clinical measures and biomechanical measures of gait and postural stability to predict an individual's PD progression over two years. Data from 160 PD subjects were utilized. Machine learning models, including XGBoost and Feed Forward Neural Networks, were developed using extensive model optimization and cross-validation. The highest performing model was a neural network that used a group of clinical measures, achieved a PPV of 71% in identifying fast progressors, and explained a large portion (37%) of the variance in an individual's progression rate on held-out test data. This demonstrates the potential to predict individual PD progression rate and enrich trials by analyzing clinical and biomechanical measures with machine learning.
Abstract:The application of deep learning to build accurate predictive models from functional neuroimaging data is often hindered by limited dataset sizes. Though data augmentation can help mitigate such training obstacles, most data augmentation methods have been developed for natural images as in computer vision tasks such as CIFAR, not for medical images. This work helps to fills in this gap by proposing a method for generating new functional Magnetic Resonance Images (fMRI) with realistic brain morphology. This method is tested on a challenging task of predicting antidepressant treatment response from pre-treatment task-based fMRI and demonstrates a 26% improvement in performance in predicting response using augmented images. This improvement compares favorably to state-of-the-art augmentation methods for natural images. Through an ablative test, augmentation is also shown to substantively improve performance when applied before hyperparameter optimization. These results suggest the optimal order of operations and support the role of data augmentation method for improving predictive performance in tasks using fMRI.