Abstract:Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
Abstract:This study explores the integration of multiple Explainable AI (XAI) techniques to enhance the interpretability of deep learning models for brain tumour detection. A custom Convolutional Neural Network (CNN) was developed and trained on the BraTS 2021 dataset, achieving 91.24% accuracy in distinguishing between tumour and non-tumour regions. This research combines Gradient-weighted Class Activation Mapping (GRAD-CAM), Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanations (SHAP) to provide comprehensive insights into the model's decision-making process. This multi-technique approach successfully identified both full and partial tumours, offering layered explanations ranging from broad regions of interest to pixel-level details. GRAD-CAM highlighted important spatial regions, LRP provided detailed pixel-level relevance and SHAP quantified feature contributions. The integrated approach effectively explained model predictions, including cases with partial tumour visibility thus showing superior explanatory power compared to individual XAI methods. This research enhances transparency and trust in AI-driven medical imaging analysis by offering a more comprehensive perspective on the model's reasoning. The study demonstrates the potential of integrated XAI techniques in improving the reliability and interpretability of AI systems in healthcare, particularly for critical tasks like brain tumour detection.



Abstract:Coronaviruses are a famous family of viruses that causes illness in human or animals. The new type of corona virus COVID-19 disease was firstly discovered in Wuhan-China. However, recently, the virus has been widely spread in most of the world countries and is reported as a pandemic. Further, nowadays, all the world countries are striving to control the coronavirus disease COVID-19. There are many mechanisms to detect the coronavirus disease COVID-19 including clinical analysis of chest CT scan images and blood test results. The confirmed COVID-19 patient manifests as fever, tiredness, and dry cough. Particularly, several techniques can be used to detect the initial results of the virus such as medical detection Kits. However, such devices are incurring huge cost and it takes time to install them and use. Therefore, in this paper, a new framework is proposed to detect coronavirus disease COVID-19 using onboard smartphone sensors. The proposal provides a low-cost solution, since most of the radiologists have already held smartphones for different daily-purposes. People can use the framework on their smartphones for the virus detection purpose. Nowadays, smartphones are powerful with existing computation-rich processors, memory space, and large number of sensors including cameras, microphone, temperature sensor, inertial sensors, proximity, colour-sensor, humidity-sensor, and wireless chipsets/sensors. The designed Artificial Intelligence (AI) enabled framework reads the smartphone sensors signal measurements to predict the grade of severity of the pneumonia as well as predicting the result of the disease.



Abstract:The recommendation to change breathing patterns from the mouth to the nose can have a significantly positive impact upon the general well being of the individual. We classify nasal and mouth breathing by using an acoustic sensor and intelligent signal processing techniques. The overall purpose is to investigate the possibility of identifying the differences in patterns between nasal and mouth breathing in order to integrate this information into a decision support system which will form the basis of a patient monitoring and motivational feedback system to recommend the change from mouth to nasal breathing. Our findings show that the breath pattern can be discriminated in certain places of the body both by visual spectrum analysis and with a Back Propagation neural network classifier. The sound file recoded from the sensor placed on the hollow in the neck shows the most promising accuracy which is as high as 90%.