Abstract:Explicitly modelling field interactions and correlations in complex documents structures has recently gained popularity in neural document embedding and retrieval tasks. Although this requires the specification of bespoke task-dependent models, encouraging empirical results are beginning to emerge. We present the first in-depth analyses of non-linear multi-field interaction (NL-MFI) ranking in the cooking domain in this work. Our results show that field-weighted factorisation machines models provide a statistically significant improvement over baselines in recipe retrieval tasks. Additionally, we show that sparsely capturing subsets of field interactions offers advantages over exhaustive alternatives. Although field-interaction aware models are more elaborate from an architectural basis, they are often more data-efficient in optimisation and are better suited for explainability due to mirrored document and model factorisation.
Abstract:Ranking tasks are usually based on the text of the main body of the page and the actions (clicks) of users on the page. There are other elements that could be leveraged to better contextualise the ranking experience (e.g. text in other fields, query made by the user, images, etc). We present one of the first in-depth analyses of field interaction for multiple field ranking in two separate datasets. While some works have taken advantage of full document structure, some aspects remain unexplored. In this work we build on previous analyses to show how query-field interactions, non-linear field interactions, and the architecture of the underlying neural model affect performance.