Abstract:In this chapter we explore and evaluate methods for trabecular bone characterization and osteoporosis diagnosis with increased interest in sparse approximations. We first describe texture representation and classification techniques, patch-based methods such as Bag of Keypoints, and more recent deep neural networks. Then we introduce the concept of sparse representations for pattern recognition and we detail integrative sparse analysis methods and classifier decision fusion methods. We report cross-validation results on osteoporosis datasets of bone radiographs and compare the results produced by the different categories of methods. We conclude that advances in the AI and machine learning fields have enabled the development of methods that can be used as diagnostic tools in clinical settings.
Abstract:Breast cancer is the most common cancer among women both in developed and developing countries. Early detection and diagnosis of breast cancer may reduce its mortality and improve the quality of life. Computer-aided detection (CADx) and computer-aided diagnosis (CAD) techniques have shown promise for reducing the burden of human expert reading and improve the accuracy and reproducibility of results. Sparse analysis techniques have produced relevant results for representing and recognizing imaging patterns. In this work we propose a method for Label Consistent Spatially Localized Ensemble Sparse Analysis (LC-SLESA). In this work we apply dictionary learning to our block based sparse analysis method to classify breast lesions as benign or malignant. The performance of our method in conjunction with LC-KSVD dictionary learning is evaluated using 10-, 20-, and 30-fold cross validation on the MIAS dataset. Our results indicate that the proposed sparse analyses may be a useful component for breast cancer screening applications.