Department of Mathematical Sciences G.L. Lagrange, Politecnico di Torino, Italy
Abstract:We present a theoretical framework assessing the economic implications of bias in AI-powered emergency response systems. Integrating health economics, welfare economics, and artificial intelligence, we analyze how algorithmic bias affects resource allocation, health outcomes, and social welfare. By incorporating a bias function into health production and social welfare models, we quantify its impact on demographic groups, showing that bias leads to suboptimal resource distribution, increased costs, and welfare losses. The framework highlights efficiency-equity trade-offs and provides economic interpretations. We propose mitigation strategies, including fairness-constrained optimization, algorithmic adjustments, and policy interventions. Our findings offer insights for policymakers, emergency service providers, and technology developers, emphasizing the need for AI systems that are efficient and equitable. By addressing the economic consequences of biased AI, this study contributes to policies and technologies promoting fairness, efficiency, and social welfare in emergency response services.
Abstract:Urbanization and technological advancements are reshaping the future of urban mobility, presenting both challenges and opportunities. This paper combines foresight and scenario planning with mathematical modeling using Ordinary Differential Equations (ODEs) to explore how Artificial Intelligence (AI)-driven technologies can transform transportation systems. By simulating ODE-based models in Python, we quantify the impact of AI innovations, such as autonomous vehicles and intelligent traffic management, on reducing traffic congestion under different regulatory conditions. Our ODE models capture the dynamic relationship between AI adoption rates and traffic congestion, providing quantitative insights into how future scenarios might unfold. By incorporating industry collaborations and case studies, we offer strategic guidance for businesses and policymakers navigating this evolving landscape. This study contributes to understanding how foresight, scenario planning, and ODE modeling can inform strategies for creating more efficient, sustainable, and livable cities through AI adoption.
Abstract:This study addresses the prediction of geomagnetic disturbances by exploiting machine learning techniques. Specifically, the Long-Short Term Memory recurrent neural network, which is particularly suited for application over long time series, is employed in the analysis of in-situ measurements of solar wind plasma and magnetic field acquired over more than one solar cycle, from $2005$ to $2019$, at the Lagrangian point L$1$. The problem is approached as a binary classification aiming to predict one hour in advance a decrease in the SYM-H geomagnetic activity index below the threshold of $-50$ nT, which is generally regarded as indicative of magnetospheric perturbations. The strong class imbalance issue is tackled by using an appropriate loss function tailored to optimize appropriate skill scores in the training phase of the neural network. Beside classical skill scores, value-weighted skill scores are then employed to evaluate predictions, suitable in the study of problems, such as the one faced here, characterized by strong temporal variability. For the first time, the content of magnetic helicity and energy carried by solar transients, associated with their detection and likelihood of geo-effectiveness, were considered as input features of the network architecture. Their predictive capabilities are demonstrated through a correlation-driven feature selection method to rank the most relevant characteristics involved in the neural network prediction model. The optimal performance of the adopted neural network in properly forecasting the onset of geomagnetic storms, which is a crucial point for giving real warnings in an operational setting, is finally showed.