Abstract:In this article, we propose an approach to leak localisation in a complex water delivery grid with the use of data from physical simulation (e.g. EPANET software). This task is usually achieved by a network of multiple water pressure sensors and analysis of the so-called sensitivity matrix of pressure differences between the network's simulated data and actual data of the network affected by the leak. However, most algorithms using this approach require a significant number of pressure sensors -- a condition that is not easy to fulfil in the case of many less equipped networks. Therefore, we answer the question of whether leak localisation is possible by utilising very few sensors but having the ability to relocate one of them. Our algorithm is based on physical simulations (EPANET software) and an iterative scheme for mobile sensor relocation. The experiments show that the proposed system can equalise the low number of sensors with adjustments made for their positioning, giving a very good approximation of leak's position both in simulated cases and real-life example taken from BattLeDIM competition L-Town data.
Abstract:Large Language Models (LLMs) have shown exceptional performance in text processing. Notably, LLMs can synthesize information from large datasets and explain their decisions similarly to human reasoning through a chain of thought (CoT). An emerging application of LLMs is the handling and interpreting of numerical data, where fine-tuning enhances their performance over basic inference methods. This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble, leveraging its efficiency and accuracy. By converting RF decision paths into natural language statements, we generate outputs for LLM fine-tuning, enhancing the model's ability to classify and explain its decisions. Our method includes verifying these rules through established classification metrics, ensuring their correctness. We also examine the impact of preprocessing techniques on the representation of numerical data and their influence on classification accuracy and rule correctness