In this article, we propose an approach to leak localisation in a complex water delivery grid with the use of data from physical simulation (e.g. EPANET software). This task is usually achieved by a network of multiple water pressure sensors and analysis of the so-called sensitivity matrix of pressure differences between the network's simulated data and actual data of the network affected by the leak. However, most algorithms using this approach require a significant number of pressure sensors -- a condition that is not easy to fulfil in the case of many less equipped networks. Therefore, we answer the question of whether leak localisation is possible by utilising very few sensors but having the ability to relocate one of them. Our algorithm is based on physical simulations (EPANET software) and an iterative scheme for mobile sensor relocation. The experiments show that the proposed system can equalise the low number of sensors with adjustments made for their positioning, giving a very good approximation of leak's position both in simulated cases and real-life example taken from BattLeDIM competition L-Town data.