Abstract:The Young Physicists Tournament is an established team-oriented scientific competition between high school students from 37 countries on 5 continents. The competition consists of scientific discussions called Fights. Three or four teams participate in each Fight, each of whom presents a problem while rotating the roles of Presenter, Opponent, Reviewer, and Observer among them. The rules of a few countries require that each team announce in advance 3 problems they will present at the national tournament. The task of the organizers is to choose the composition of Fights in such a way that each team presents each of its chosen problems exactly once and within a single Fight no problem is presented more than once. Besides formalizing these feasibility conditions, in this paper we formulate several additional fairness conditions for tournament schedules. We show that the fulfillment of some of them can be ensured by constructing suitable edge colorings in bipartite graphs. To find fair schedules, we propose integer linear programs and test them on real as well as randomly generated data.
Abstract:The paper considers fair allocation of indivisible nondisposable items that generate disutility (chores). We assume that these items are placed in the vertices of a graph and each agent's share has to form a connected subgraph of this graph. Although a similar model has been investigated before for goods, we show that the goods and chores settings are inherently different. In particular, it is impossible to derive the solution of the chores instance from the solution of its naturally associated fair division instance. We consider three common fair division solution concepts, namely proportionality, envy-freeness and equitability, and two individual disutility aggregation functions: additive and maximum based. We show that deciding the existence of a fair allocation is hard even if the underlying graph is a path or a star. We also present some efficiently solvable special cases for these graph topologies.