Abstract:We propose a procedure for supervised classification that is based on potential functions. The potential of a class is defined as a kernel density estimate multiplied by the class's prior probability. The method transforms the data to a potential-potential (pot-pot) plot, where each data point is mapped to a vector of potentials. Separation of the classes, as well as classification of new data points, is performed on this plot. For this, either the $\alpha$-procedure ($\alpha$-P) or $k$-nearest neighbors ($k$-NN) are employed. For data that are generated from continuous distributions, these classifiers prove to be strongly Bayes-consistent. The potentials depend on the kernel and its bandwidth used in the density estimate. We investigate several variants of bandwidth selection, including joint and separate pre-scaling and a bandwidth regression approach. The new method is applied to benchmark data from the literature, including simulated data sets as well as 50 sets of real data. It compares favorably to known classification methods such as LDA, QDA, max kernel density estimates, $k$-NN, and $DD$-plot classification using depth functions.
Abstract:A new procedure, called DDa-procedure, is developed to solve the problem of classifying d-dimensional objects into q >= 2 classes. The procedure is completely nonparametric; it uses q-dimensional depth plots and a very efficient algorithm for discrimination analysis in the depth space [0,1]^q. Specifically, the depth is the zonoid depth, and the algorithm is the alpha-procedure. In case of more than two classes several binary classifications are performed and a majority rule is applied. Special treatments are discussed for 'outsiders', that is, data having zero depth vector. The DDa-classifier is applied to simulated as well as real data, and the results are compared with those of similar procedures that have been recently proposed. In most cases the new procedure has comparable error rates, but is much faster than other classification approaches, including the SVM.