Abstract:The dual thinking framework considers fast, intuitive processing and slower, logical processing. The perception of dual thinking in vision requires images where inferences from intuitive and logical processing differ. We introduce an adversarial dataset to provide evidence for the dual thinking framework in human vision, which also aids in studying the qualitative behavior of deep learning models. Our study also addresses a major criticism of using classification models as computational models of human vision by using instance segmentation models that localize objects. The evidence underscores the importance of shape in identifying instances in human vision and shows that deep learning models lack an understanding of sub-structures, as indicated by errors related to the position and number of sub-components. Additionally, the similarity in errors made by models and intuitive human processing indicates that models only address intuitive thinking in human vision.