Abstract:To cluster, classify and represent are three fundamental objectives of learning from high-dimensional data with intrinsic structure. To this end, this paper introduces three interpretable approaches, i.e., segmentation (clustering) via the Minimum Lossy Coding Length criterion, classification via the Minimum Incremental Coding Length criterion and representation via the Maximal Coding Rate Reduction criterion. These are derived based on the lossy data coding and compression framework from the principle of rate distortion in information theory. These algorithms are particularly suitable for dealing with finite-sample data (allowed to be sparse or almost degenerate) of mixed Gaussian distributions or subspaces. The theoretical value and attractive features of these methods are summarized by comparison with other learning methods or evaluation criteria. This summary note aims to provide a theoretical guide to researchers (also engineers) interested in understanding 'white-box' machine (deep) learning methods.
Abstract:Compared with contact detection techniques, pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected, fast speed and low cost. The fundamental frameworks and typical model architectures of transfer learning (TL), encoder-decoder (ED), generative adversarial networks (GAN), and their common modules were first reviewed, and then the evolution of convolutional neural network (CNN) backbone models and GAN models were summarized. The crack classification, segmentation performance, and effect were tested on the SDNET2018 and CFD public data sets. In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy, and the predicting time is faster; In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform. Furthermore, a weakly supervised learning framework of combined TL-SSGAN and its performance enhancement measures are proposed, which can maintain comparable crack identification performance with that of the supervised learning, while greatly reducing the number of labeled samples required.