Abstract:The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.
Abstract:Urban region profiling can benefit urban analytics. Although existing studies have made great efforts to learn urban region representation from multi-source urban data, there are still three limitations: (1) Most related methods focused merely on global-level inter-region relations while overlooking local-level geographical contextual signals and intra-region information; (2) Most previous works failed to develop an effective yet integrated fusion module which can deeply fuse multi-graph correlations; (3) State-of-the-art methods do not perform well in regions with high variance socioeconomic attributes. To address these challenges, we propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling. Specifically, except that human mobility is encoded for inter-region relations, geographic neighborhood is introduced for capturing geographical contextual information while POI side information is adopted for representing intra-region information by knowledge graph. Then, graphs are used to capture accessibility, vicinity, and functionality correlations among regions. To consider the discriminative properties of multiple graphs, an encoder-decoder multi-graph fusion module is further proposed to jointly learn comprehensive representations. Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines. Particularly, Region2Vec has better performance than previous studies in regions with high variance socioeconomic attributes.
Abstract:Hyperbolic geometry has been successfully applied in modeling brain cortical and subcortical surfaces with general topological structures. However such approaches, similar to other surface based brain morphology analysis methods, usually generate high dimensional features. It limits their statistical power in cognitive decline prediction research, especially in datasets with limited subject numbers. To address the above limitation, we propose a novel framework termed as hyperbolic stochastic coding (HSC). Our preliminary experimental results show that our algorithm achieves superior results on various classification tasks. Our work may enrich surface based brain imaging research tools and potentially result in a diagnostic and prognostic indicator to be useful in individualized treatment strategies.