Abstract:Online optimisation studies the convergence of optimisation methods as the data embedded in the problem changes. Based on this idea, we propose a primal dual online method for nonlinear time-discrete inverse problems. We analyse the method through regret theory and demonstrate its performance in real-time monitoring of moving bodies in a fluid with Electrical Impedance Tomography (EIT). To do so, we also prove the second-order differentiability of the Complete Electrode Model (CEM) solution operator on $L^\infty$.
Abstract:Online optimisation facilitates the solution of dynamic inverse problems, such as image stabilisation, fluid flow monitoring, and dynamic medical imaging. In this paper, we improve upon previous work on predictive online primal-dual methods on two fronts. Firstly, we provide a more concise analysis that symmetrises previously unsymmetric regret bounds, and relaxes previous restrictive conditions on the dual predictor. Secondly, based on the latter, we develop several improved dual predictors. We numerically demonstrate their efficacy in image stabilisation and dynamic positron emission tomography.