Abstract:Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
Abstract:Deep learning has shown tremendous progress in a wide range of digital pathology and medical image classification tasks. Its integration into safe clinical decision-making support requires robust and reliable models. However, real-world data comes with diversities that often lie outside the intended source distribution. Moreover, when test samples are dramatically different, clinical decision-making is greatly affected. Quantifying predictive uncertainty in models is crucial for well-calibrated predictions and determining when (or not) to trust a model. Unfortunately, many works have overlooked the importance of predictive uncertainty estimation. This paper evaluates whether predictive uncertainty estimation adds robustness to deep learning-based diagnostic decision-making systems. We investigate the effect of various carcinoma distribution shift scenarios on predictive performance and calibration. We first systematically investigate three popular methods for improving predictive uncertainty: Monte Carlo dropout, deep ensemble, and few-shot learning on lung adenocarcinoma classification as a primary disease in whole slide images. Secondly, we compare the effectiveness of the methods in terms of performance and calibration under clinically relevant distribution shifts such as in-distribution shifts comprising primary disease sub-types and other characterization analysis data; out-of-distribution shifts comprising well-differentiated cases, different organ origin, and imaging modality shifts. While studies on uncertainty estimation exist, to our best knowledge, no rigorous large-scale benchmark compares predictive uncertainty estimation including these dataset shifts for lung carcinoma classification.