Abstract:Assessing cognitive workload is crucial for human performance as it affects information processing, decision making, and task execution. Pupil size is a valuable indicator of cognitive workload, reflecting changes in attention and arousal governed by the autonomic nervous system. Cognitive events are closely linked to cognitive workload as they activate mental processes and trigger cognitive responses. This study explores the potential of using machine learning to automatically detect cognitive events experienced using individuals. We framed the problem as a binary classification task, focusing on detecting stimulus onset across four cognitive tasks using CNN models and 1-second pupillary data. The results, measured by Matthew's correlation coefficient, ranged from 0.47 to 0.80, depending on the cognitive task. This paper discusses the trade-offs between generalization and specialization, model behavior when encountering unseen stimulus onset times, structural variances among cognitive tasks, factors influencing model predictions, and real-time simulation. These findings highlight the potential of machine learning techniques in detecting cognitive events based on pupil and eye movement responses, contributing to advancements in personalized learning and optimizing neurocognitive workload management.
Abstract:We introduce a labeling tool and dataset aimed to facilitate computer vision research in agriculture. The annotation tool introduces novel methods for labeling with a variety of manual, semi-automatic, and fully-automatic tools. The dataset includes original images collected from commercial greenhouses, images from PlantVillage, and images from Google Images. Images were annotated with segmentations for foreground leaf, fruit, and stem instances, and diseased leaf area. Labels were in an extended COCO format. In total the dataset contained 10k tomatoes, 7k leaves, 2k stems, and 2k diseased leaf annotations.