Abstract:In the realm of machine learning, the KNN classification algorithm is widely recognized for its simplicity and efficiency. However, its sensitivity to the K value poses challenges, especially with small sample sizes or outliers, impacting classification performance. This article introduces a novel KNN-based classifier called LMPHNN (Novel Pseudo Nearest Neighbor Classification Method Using Local Harmonic Mean Distance). LMPHNN leverages harmonic mean distance (HMD) to improve classification performance based on LMPNN rules and HMD. The classifier begins by identifying k nearest neighbors for each class and generates distinct local vectors as prototypes. Pseudo nearest neighbors (PNNs) are then created based on the local mean for each class, determined by comparing the HMD of the sample with the initial k group. Classification is determined by calculating the Euclidean distance between the query sample and PNNs, based on the local mean of these categories. Extensive experiments on various real UCI datasets and combined datasets compare LMPHNN with seven KNN-based classifiers, using precision, recall, accuracy, and F1 as evaluation metrics. LMPHNN achieves an average precision of 97%, surpassing other methods by 14%. The average recall improves by 12%, with an average accuracy enhancement of 5%. Additionally, LMPHNN demonstrates a 13% higher average F1 value compared to other methods. In summary, LMPHNN outperforms other classifiers, showcasing lower sensitivity with small sample sizes.
Abstract:Large unlabeled data and difficult-to-identify anomalies are the urgent issues need to overcome in most industrial scene. In order to address this issue, a new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL). The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types by generating simulated anomaly samples. To cope with the problem of the lack of labeling of anomalous simulated samples, a pseudo-labeler method based on a one-classifier ensemble was employed in this study, which enhances the robustness of the model in the case of limited labeling data by automatically selecting key pseudo-labeling hyperparameters. Meanwhile, a memory-enhanced learning mechanism is introduced to effectively predict abnormal regions by analyzing the difference be-tween the input samples and the normal samples in the memory pool. An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data, which optimizes the ef-ficiency and real-time performance of de-tection. By conducting extensive trials on the recently developed BHAD dataset (in-cluding MVTec AD [1], Visa [2], and MDPP [3]), MAPL achieves an average im-age-level AUROC score of 86.2%, demon-strating a 5.1% enhancement compared to the original MemSeg [4] model. The source code is available at https://github.com/jzc777/MAPL.
Abstract:In the wake of the global spread of monkeypox, accurate disease recognition has become crucial. This study introduces an improved SE-InceptionV3 model, embedding the SENet module and incorporating L2 regularization into the InceptionV3 framework to enhance monkeypox disease detection. Utilizing the Kaggle monkeypox dataset, which includes images of monkeypox and similar skin conditions, our model demonstrates a noteworthy accuracy of 96.71% on the test set, outperforming conventional methods and deep learning models. The SENet modules channel attention mechanism significantly elevates feature representation, while L2 regularization ensures robust generalization. Extensive experiments validate the models superiority in precision, recall, and F1 score, highlighting its effectiveness in differentiating monkeypox lesions in diverse and complex cases. The study not only provides insights into the application of advanced CNN architectures in medical diagnostics but also opens avenues for further research in model optimization and hyperparameter tuning for enhanced disease recognition. https://github.com/jzc777/SE-inceptionV3-L2