Abstract:Network inference has been extensively studied in several fields, such as systems biology and social sciences. Learning network topology and internal dynamics is essential to understand mechanisms of complex systems. In particular, sparse topologies and stable dynamics are fundamental features of many real-world continuous-time networks. Given that usually only a partial set of nodes are able to observe, in this paper, we consider linear continuous-time systems to depict networks since they can model unmeasured nodes via transfer functions. Additionally, measurements tend to be noisy and with low and varying sampling frequencies. For this reason, we consider continuous-time models (CT) since discrete-time approximations often require fine-grained measurements and uniform sampling steps. The developed method applies dynamical structure functions (DSFs) derived from linear stochastic differential equations (SDEs) to describe networks of measured nodes. Further, a numerical sampling method, preconditioned Crank-Nicolson (pCN), is used to refine coarse-grained trajectories to improve inference accuracy. The simulation conducted on random and ring networks, and a synthetic biological network illustrate that our method achieves state-of-the-art performance compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI. In particular, these are challenging networks, suggesting that the developed method can be applied under a wide range of contexts.
Abstract:Diagnosis of ice accretion on wind turbine blades is all the time a hard nut to crack in condition monitoring of wind farms. Existing methods focus on mechanism analysis of icing process, deviation degree analysis of feature engineering. However, there have not been deep researches of neural networks applied in this field at present. Supervisory control and data acquisition (SCADA) makes it possible to train networks through continuously providing not only operation parameters and performance parameters of wind turbines but also environmental parameters and operation modes. This paper explores the possibility that using convolutional neural networks (CNNs), generative adversarial networks (GANs) and domain adaption learning to establish intelligent diagnosis frameworks under different training scenarios. Specifically, PGANC and PGANT are proposed for sufficient and non-sufficient target wind turbine labeled data, respectively. The basic idea is that we consider a two-stage training with parallel GANs, which are aimed at capturing intrinsic features for normal and icing samples, followed by classification CNN or domain adaption module in various training cases. Model validation on three wind turbine SCADA data shows that two-stage training can effectively improve the model performance. Besides, if there is no sufficient labeled data for a target turbine, which is an extremely common phenomenon in real industrial practices, the addition of domain adaption learning makes the trained model show better performance. Overall, our proposed intelligent diagnosis frameworks can achieve more accurate detection on the same wind turbine and more generalized capability on a new wind turbine, compared with other machine learning models and conventional CNNs.