Abstract:Mangroves are critical for climate-change mitigation, requiring reliable monitoring for effective conservation. While deep learning has emerged as a powerful tool for mangrove detection, its progress is hindered by the limitations of existing datasets. In particular, many resources provide only annual map products without curated single-date image-mask pairs, limited to specific regions rather than global coverage, or remain inaccessible to the public. To address these challenges, we introduce MANGO, a large-scale global dataset comprising 42,703 labeled image-mask pairs across 124 countries. To construct this dataset, we retrieve all available Sentinel-2 imagery within the year 2020 for mangrove regions and select the best single-date observations that align with the mangrove annual mask. This selection is performed using a target detection-driven approach that leverages pixel-wise coordinate references to ensure adaptive and representative image-mask pairings. We also provide a benchmark across diverse semantic segmentation architectures under a country-disjoint split, establishing a foundation for scalable and reliable global mangrove monitoring.
Abstract:The speckle noise inherent in Synthetic Aperture Radar (SAR) imagery significantly degrades image quality and complicates subsequent analysis. Given that SAR speckle is multiplicative and Gamma-distributed, effectively despeckling SAR imagery remains challenging. This paper introduces a novel self-supervised framework for SAR image despeckling based on score-based generative models operating in the transformed log domain. We first transform the data into the log-domain and then convert the speckle noise residuals into an approximately additive Gaussian distribution. This step enables the application of score-based models, which are trained in the transformed domain using a self-supervised objective. This objective allows our model to learn the clean underlying signal by training on further corrupted versions of the input data itself. Consequently, our method exhibits significantly shorter inference times compared to many existing self-supervised techniques, offering a robust and practical solution for SAR image restoration.
Abstract:Limited data is a common problem in remote sensing due to the high cost of obtaining annotated samples. In the few-shot segmentation task, models are typically trained on base classes with abundant annotations and later adapted to novel classes with limited examples. However, this often necessitates specialized model architectures or complex training strategies. Instead, we propose a simple approach that leverages diffusion models to generate diverse variations of novel-class objects within a given scene, conditioned by the limited examples of the novel classes. By framing the problem as an image inpainting task, we synthesize plausible instances of novel classes under various environments, effectively increasing the number of samples for the novel classes and mitigating overfitting. The generated samples are then assessed using a cosine similarity metric to ensure semantic consistency with the novel classes. Additionally, we employ Segment Anything Model (SAM) to segment the generated samples and obtain precise annotations. By using high-quality synthetic data, we can directly fine-tune off-the-shelf segmentation models. Experimental results demonstrate that our method significantly enhances segmentation performance in low-data regimes, highlighting its potential for real-world remote sensing applications.