Abstract:Minimum-variance portfolio optimizations rely on accurate covariance estimator to obtain optimal portfolios. However, it usually suffers from large error from sample covariance matrix when the sample size $n$ is not significantly larger than the number of assets $p$. We analyze the random matrix aspects of portfolio optimization and identify the order of errors in sample optimal portfolio weight and show portfolio risk are underestimated when using samples. We also provide LoCoV (low dimension covariance voting) algorithm to reduce error inherited from random samples. From various experiments, LoCoV is shown to outperform the classical method by a large margin.
Abstract:Johnson-Lindenstrauss guarantees certain topological structure is preserved under random projections when embedding high dimensional deterministic vectors to low dimensional vectors. In this work, we try to understand how random projections affect norms of random vectors. In particular we prove the distribution of norm of random vectors $X \in \mathbb{R}^n$, whose entries are i.i.d. random variables, is preserved by random projection $S:\mathbb{R}^n \to \mathbb{R}^m$. More precisely, \[ \frac{X^TS^TSX - mn}{\sqrt{\sigma^2 m^2n+2mn^2}} \xrightarrow[\quad m/n\to 0 \quad ]{ m,n\to \infty } \mathcal{N}(0,1) \]