Abstract:Explainable Artificial Intelligence (XAI) is essential for building advanced machine learning-powered applications, especially in critical domains such as medical diagnostics or autonomous driving. Legal, business, and ethical requirements motivate using effective XAI, but the increasing number of different methods makes it challenging to pick the right ones. Further, as explanations are highly context-dependent, measuring the effectiveness of XAI methods without users can only reveal a limited amount of information, excluding human factors such as the ability to understand it. We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task, designed such that a good performance is an indicator for the explanation to provide helpful information. In other words, we address the helpfulness of XAI for human decision-making. Further, a user study on state-of-the-art methods was conducted, showing differences in their ability to generate trust and skepticism and the ability to judge the rightfulness of an AI decision correctly. Based on the results, we highly recommend using and extending this approach for more objective-based human-centered user studies to measure XAI performance in an end-to-end fashion.
Abstract:Semantic segmentation has witnessed remarkable advancements with the adaptation of the Transformer architecture. Parallel to the strides made by the Transformer, CNN-based U-Net has seen significant progress, especially in high-resolution medical imaging and remote sensing. This dual success inspired us to merge the strengths of both, leading to the inception of a U-Net-based vision transformer decoder tailored for efficient contextual encoding. Here, we propose a novel transformer decoder, U-MixFormer, built upon the U-Net structure, designed for efficient semantic segmentation. Our approach distinguishes itself from the previous transformer methods by leveraging lateral connections between the encoder and decoder stages as feature queries for the attention modules, apart from the traditional reliance on skip connections. Moreover, we innovatively mix hierarchical feature maps from various encoder and decoder stages to form a unified representation for keys and values, giving rise to our unique mix-attention module. Our approach demonstrates state-of-the-art performance across various configurations. Extensive experiments show that U-MixFormer outperforms SegFormer, FeedFormer, and SegNeXt by a large margin. For example, U-MixFormer-B0 surpasses SegFormer-B0 and FeedFormer-B0 with 3.8% and 2.0% higher mIoU and 27.3% and 21.8% less computation and outperforms SegNext with 3.3% higher mIoU with MSCAN-T encoder on ADE20K. Code available at https://github.com/julian-klitzing/u-mixformer.