Abstract:We present PDFFlow, a new software for fast evaluation of parton distribution functions (PDFs) designed for platforms with hardware accelerators. PDFs are essential for the calculation of particle physics observables through Monte Carlo simulation techniques. The evaluation of a generic set of PDFs for quarks and gluons at a given momentum fraction and energy scale requires the implementation of interpolation algorithms as introduced for the first time by the LHAPDF project. PDFFlow extends and implements these interpolation algorithms using Google's TensorFlow library providing the possibility to perform PDF evaluations taking fully advantage of multi-threading CPU and GPU setups. We benchmark the performance of this library on multiple scenarios relevant for the particle physics community.
Abstract:We present PDFFlow, a new software for fast evaluation of parton distribution functions (PDFs) designed for platforms with hardware accelerators. PDFs are essential for the calculation of particle physics observables through Monte Carlo simulation techniques. The evaluation of a generic set of PDFs for quarks and gluon at a given momentum fraction and energy scale requires the implementation of interpolation algorithms as introduced for the first time by the LHAPDF project. PDFFlow extends and implements these interpolation algorithms using Google's TensorFlow library providing the capabilities to perform PDF evaluations taking fully advantage of multi-threading CPU and GPU setups. We benchmark the performance of this library on multiple scenarios relevant for the particle physics community.
Abstract:We present VegasFlow, a new software for fast evaluation of high dimensional integrals based on Monte Carlo integration techniques designed for platforms with hardware accelerators. The growing complexity of calculations and simulations in many areas of science have been accompanied by advances in the computational tools which have helped their developments. VegasFlow enables developers to delegate all complicated aspects of hardware or platform implementation to the library so they can focus on the problem at hand. This software is inspired on the Vegas algorithm, ubiquitous in the particle physics community as the driver of cross section integration, and based on Google's powerful TensorFlow library. We benchmark the performance of this library on many different consumer and professional grade GPUs and CPUs.