Abstract:The challenge of creating interpretable models has been taken up by two main research communities: ML researchers primarily focused on lower-level explainability methods that suit the needs of engineers, and HCI researchers who have more heavily emphasized user-centered approaches often based on participatory design methods. This paper reviews how these communities have evaluated interpretability, identifying overlaps and semantic misalignments. We propose moving towards a unified framework of evaluation criteria and lay the groundwork for such a framework by articulating the relationships between existing criteria. We argue that explanations serve as mediators between models and stakeholders, whether for intrinsically interpretable models or opaque black-box models analyzed via post-hoc techniques. We further argue that useful explanations require both faithfulness and intelligibility. Explanation plausibility is a prerequisite for intelligibility, while stability is a prerequisite for explanation faithfulness. We illustrate these criteria, as well as specific evaluation methods, using examples from an ongoing study of an interpretable neural network for predicting a particular learner behavior.
Abstract:With the ever-growing presence of deep artificial neural networks in every facet of modern life, a growing body of researchers in educational data science -- a field consisting of various interrelated research communities -- have turned their attention to leveraging these powerful algorithms within the domain of education. Use cases range from advanced knowledge tracing models that can leverage open-ended student essays or snippets of code to automatic affect and behavior detectors that can identify when a student is frustrated or aimlessly trying to solve problems unproductively -- and much more. This chapter provides a brief introduction to deep learning, describes some of its advantages and limitations, presents a survey of its many uses in education, and discusses how it may further come to shape the field of educational data science.