Abstract:This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model predictive control. Hion controllers estimate future states and compute optimal control inputs using Pontryagin's Maximum Principle. The proposed framework allows for customization of transient behavior, addressing limitations of existing methods. The Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture facilitates training and ensures accurate state estimation. Optimal control strategies are demonstrated for both linear and non-linear dynamical systems.
Abstract:In burgeoning domains, like urban goods distribution, the advent of aerial cargo transportation necessitates the development of routing solutions that prioritize safety. This paper introduces Larp, a novel path planning framework that leverages the concept of restrictive potential fields to forge routes demonstrably safer than those derived from existing methods. The algorithm achieves it by segmenting a potential field into a hierarchy of cells, each with a designated restriction zone determined by obstacle proximity. While the primary impetus behind Larp is to enhance the safety of aerial pathways for cargo-carrying Unmanned Aerial Vehicles (UAVs), its utility extends to a wide array of path planning scenarios. Comparative analyses with both established and contemporary potential field-based methods reveal Larp's proficiency in maintaining a safe distance from restrictions and its adeptness in circumventing local minima.