Abstract:Warehouse robotic systems equipped with vacuum grippers must reliably grasp a diverse range of objects from densely packed shelves. However, these environments present significant challenges, including occlusions, diverse object orientations, stacked and obstructed items, and surfaces that are difficult to suction. We introduce \tetra, a novel vacuum-based grasping strategy featuring four suction cups mounted on linear actuators. Each actuator is equipped with an optical time-of-flight (ToF) proximity sensor, enabling reactive grasping. We evaluate \tetra in a warehouse-style setting, demonstrating its ability to manipulate objects in stacked and obstructed configurations. Our results show that our RL-based policy improves picking success in stacked-object scenarios by 22.86\% compared to a single-suction gripper. Additionally, we demonstrate that TetraGrip can successfully grasp objects in scenarios where a single-suction gripper fails due to physical limitations, specifically in two cases: (1) picking an object occluded by another object and (2) retrieving an object in a complex scenario. These findings highlight the advantages of multi-actuated, suction-based grasping in unstructured warehouse environments. The project website is available at: \href{https://tetragrip.github.io/}{https://tetragrip.github.io/}.
Abstract:Deep reinforcement learning (RL) has been shown to be effective in producing approximate solutions to some vehicle routing problems (VRPs), especially when using policies generated by encoder-decoder attention mechanisms. While these techniques have been quite successful for relatively simple problem instances, there are still under-researched and highly complex VRP variants for which no effective RL method has been demonstrated. In this work we focus on one such VRP variant, which contains multiple trucks and multi-leg routing requirements. In these problems, demand is required to move along sequences of nodes, instead of just from a start node to an end node. With the goal of making deep RL a viable strategy for real-world industrial-scale supply chain logistics, we develop new extensions to existing encoder-decoder attention models which allow them to handle multiple trucks and multi-leg routing requirements. Our models have the advantage that they can be trained for a small number of trucks and nodes, and then embedded into a large supply chain to yield solutions for larger numbers of trucks and nodes. We test our approach on a real supply chain environment arising in the operations of Japanese automotive parts manufacturer Aisin Corporation, and find that our algorithm outperforms Aisin's previous best solution.