Abstract:We introduce Probabilistic Dependency Graphs (PDGs), a new class of directed graphical models. PDGs can capture inconsistent beliefs in a natural way and are more modular than Bayesian Networks (BNs), in that they make it easier to incorporate new information and restructure the representation. We show by example how PDGs are an especially natural modeling tool. We provide three semantics for PDGs, each of which can be derived from a scoring function (on joint distributions over the variables in the network) that can be viewed as representing a distribution's incompatibility with the PDG. For the PDG corresponding to a BN, this function is uniquely minimized by the distribution the BN represents, showing that PDG semantics extend BN semantics. We show further that factor graphs and their exponential families can also be faithfully represented as PDGs, while there are significant barriers to modeling a PDG with a factor graph.
Abstract:We consider how an agent should update her beliefs when her beliefs are represented by a set P of probability distributions, given that the agent makes decisions using the minimax criterion, perhaps the best-studied and most commonly-used criterion in the literature. We adopt a game-theoretic framework, where the agent plays against a bookie, who chooses some distribution from P. We consider two reasonable games that differ in what the bookie knows when he makes his choice. Anomalies that have been observed before, like time inconsistency, can be understood as arising because different games are being played, against bookies with different information. We characterize the important special cases in which the optimal decision rules according to the minimax criterion amount to either conditioning or simply ignoring the information. Finally, we consider the relationship between updating and calibration when uncertainty is described by sets of probabilities. Our results emphasize the key role of the rectangularity condition of Epstein and Schneider.