Abstract:Improving the performance of classifiers is the realm of prototype selection and kernel transformations. Prototype selection has been used to reduce the space complexity of k-Nearest Neighbors classifiers and to improve its accuracy, and kernel transformations enhanced the performance of linear classifiers by converting a non-linear separable problem into a linear one in the transformed space. Our proposal combines, in a model selection scheme, these transformations with classic algorithms such as Na\"ive Bayes and k-Nearest Neighbors to produce a competitive classifier. We analyzed our approach on different classification problems and compared it to state-of-the-art classifiers. The results show that the methodology proposed is competitive, obtaining the lowest rank among the classifiers being compared.