Abstract:In this work, we prove that, in linear MDPs, the feature dimension $d$ is lower bounded by $S/U$ in order to aptly represent transition probabilities, where $S$ is the size of the state space and $U$ is the maximum size of directly reachable states. Hence, $d$ can still scale with $S$ depending on the direct reachability of the environment. To address this limitation of linear MDPs, we propose a novel structural aggregation framework based on dynamics, named as the "dynamics aggregation". For this newly proposed framework, we design a provably efficient hierarchical reinforcement learning algorithm in linear function approximation that leverages aggregated sub-structures. Our proposed algorithm exhibits statistical efficiency, achieving a regret of $ \tilde{O} ( d_{\psi}^{3/2} H^{3/2}\sqrt{ N T} )$, where $d_{\psi}$ represents the feature dimension of aggregated subMDPs and $N$ signifies the number of aggregated subMDPs. We establish that the condition $d_{\psi}^3 N \ll d^{3}$ is readily met in most real-world environments with hierarchical structures, enabling a substantial improvement in the regret bound compared to LSVI-UCB, which enjoys a regret of $ \tilde{O} (d^{3/2} H^{3/2} \sqrt{ T})$. To the best of our knowledge, this work presents the first HRL algorithm with linear function approximation that offers provable guarantees.
Abstract:In this paper, we investigate the contextual multinomial logit (MNL) bandit problem in which a learning agent sequentially selects an assortment based on contextual information, and user feedback follows an MNL choice model. There has been a significant discrepancy between lower and upper regret bounds, particularly regarding the feature dimension $d$ and the maximum assortment size $K$. Additionally, the variation in reward structures between these bounds complicates the quest for optimality. Under uniform rewards, where all items have the same expected reward, we establish a regret lower bound of $\Omega(d\sqrt{\smash[b]{T/K}})$ and propose a constant-time algorithm, OFU-MNL+, that achieves a matching upper bound of $\tilde{\mathcal{O}}(d\sqrt{\smash[b]{T/K}})$. Under non-uniform rewards, we prove a lower bound of $\Omega(d\sqrt{T})$ and an upper bound of $\tilde{\mathcal{O}}(d\sqrt{T})$, also achievable by OFU-MNL+. Our empirical studies support these theoretical findings. To the best of our knowledge, this is the first work in the MNL contextual bandit literature to prove minimax optimality -- for either uniform or non-uniform reward setting -- and to propose a computationally efficient algorithm that achieves this optimality up to logarithmic factors.
Abstract:In reinforcement learning, temporal abstraction in the action space, exemplified by action repetition, is a technique to facilitate policy learning through extended actions. However, a primary limitation in previous studies of action repetition is its potential to degrade performance, particularly when sub-optimal actions are repeated. This issue often negates the advantages of action repetition. To address this, we propose a novel algorithm named Uncertainty-aware Temporal Extension (UTE). UTE employs ensemble methods to accurately measure uncertainty during action extension. This feature allows policies to strategically choose between emphasizing exploration or adopting an uncertainty-averse approach, tailored to their specific needs. We demonstrate the effectiveness of UTE through experiments in Gridworld and Atari 2600 environments. Our findings show that UTE outperforms existing action repetition algorithms, effectively mitigating their inherent limitations and significantly enhancing policy learning efficiency.