Abstract:The application of machine learning on healthcare data is often hindered by the lack of standardized and semantically explicit representation, leading to limited interoperability and reproducibility across datasets and experiments. The Medical Event Data Standard (MEDS) addresses these issues by introducing a minimal, event-centric data model designed for reproducible machine-learning workflows from health data. However, MEDS is defined as a data-format specification and does not natively provide integration with the Semantic Web ecosystem. In this article, we introduce MEDS-OWL, a lightweight OWL ontology that provides formal concepts and relations to enable representing MEDS datasets as RDF graphs. Additionally, we implemented meds2rdf, a Python conversion library that transforms MEDS events into RDF graphs, ensuring conformance with the ontology. We demonstrate the approach on a synthetic clinical dataset that describes patient care pathways for ruptured intracranial aneurysms and validate the resulting graph using SHACL constraints. The first release of MEDS-OWL comprises 13 classes, 10 object properties, 20 data properties, and 24 OWL axioms. Combined with meds2rdf, it enables data transformation into FAIR-aligned datasets, provenance-aware publishing, and interoperability of event-based clinical data. By bridging MEDS with the Semantic Web, this work contributes a reusable semantic layer for event-based clinical data and establishes a robust foundation for subsequent graph-based analytics.
Abstract:Background: With the increasing availability of healthcare data, predictive modeling finds many applications in the biomedical domain, such as the evaluation of the level of risk for various conditions, which in turn can guide clinical decision making. However, it is unclear how knowledge graph data representations and their embedding, which are competitive in some settings, could be of interest in biomedical predictive modeling. Method: We simulated synthetic but realistic data of patients with intracranial aneurysm and experimented on the task of predicting their clinical outcome. We compared the performance of various classification approaches on tabular data versus a graph-based representation of the same data. Next, we investigated how the adopted schema for representing first individual data and second temporal data impacts predictive performances. Results: Our study illustrates that in our case, a graph representation and Graph Convolutional Network (GCN) embeddings reach the best performance for a predictive task from observational data. We emphasize the importance of the adopted schema and of the consideration of literal values in the representation of individual data. Our study also moderates the relative impact of various time encoding on GCN performance.