Abstract:Recent robotic task planning frameworks have integrated large multimodal models (LMMs) such as GPT-4V. To address grounding issues of such models, it has been suggested to split the pipeline into perceptional state grounding and subsequent state-based planning. As we show in this work, the state grounding ability of LMM-based approaches is still limited by weaknesses in granular, structured, domain-specific scene understanding. To address this shortcoming, we develop a more structured state grounding framework that features a domain-conditioned scene graph as its scene representation. We show that such representation is actionable in nature as it is directly mappable to a symbolic state in classical planning languages such as PDDL. We provide an instantiation of our state grounding framework where the domain-conditioned scene graph generation is implemented with a lightweight vision-language approach that classifies domain-specific predicates on top of domain-relevant object detections. Evaluated across three domains, our approach achieves significantly higher state estimation accuracy and task planning success rates compared to the previous LMM-based approaches.
Abstract:Few-shot segmentation performance declines substantially when facing images from a domain different than the training domain, effectively limiting real-world use cases. To alleviate this, recently cross-domain few-shot segmentation (CD-FSS) has emerged. Works that address this task mainly attempted to learn segmentation on a source domain in a manner that generalizes across domains. Surprisingly, we can outperform these approaches while eliminating the training stage and removing their main segmentation network. We show test-time task-adaption is the key for successful CD-FSS instead. Task-adaption is achieved by appending small networks to the feature pyramid of a conventionally classification-pretrained backbone. To avoid overfitting to the few labeled samples in supervised fine-tuning, consistency across augmented views of input images serves as guidance while learning the parameters of the attached layers. Despite our self-restriction not to use any images other than the few labeled samples at test time, we achieve new state-of-the-art performance in CD-FSS, evidencing the need to rethink approaches for the task.