Abstract:There are a growing number of AI applications, but none tailored specifically to help residents answer their questions about municipal budget, a topic most are interested in but few have a solid comprehension of. In this research paper, we propose GRASP, a custom AI chatbot framework which stands for Generation with Retrieval and Action System for Prompts. GRASP provides more truthful and grounded responses to user budget queries than traditional information retrieval systems like general Large Language Models (LLMs) or web searches. These improvements come from the novel combination of a Retrieval-Augmented Generation (RAG) framework ("Generation with Retrieval") and an agentic workflow ("Action System"), as well as prompt engineering techniques, the incorporation of municipal budget domain knowledge, and collaboration with local town officials to ensure response truthfulness. During testing, we found that our GRASP chatbot provided precise and accurate responses for local municipal budget queries 78% of the time, while GPT-4o and Gemini were only accurate 60% and 35% of the time, respectively. GRASP chatbots greatly reduce the time and effort needed for the general public to get an intuitive and correct understanding of their town's budget, thus fostering greater communal discourse, improving government transparency, and allowing citizens to make more informed decisions.