Abstract:Automated game design (AGD), the study of automatically generating game rules, has a long history in technical games research. AGD approaches generally rely on approximations of human play, either objective functions or AI agents. Despite this, the majority of these approximators are static, meaning they do not reflect human player's ability to learn and improve in a game. In this paper, we investigate the application of Reinforcement Learning (RL) as an approximator for human play for rule generation. We recreate the classic AGD environment Mechanic Maker in Unity as a new, open-source rule generation framework. Our results demonstrate that RL produces distinct sets of rules from an A* agent baseline, which may be more usable by humans.
Abstract:Procedural Content Generation (PCG) and Procedural Content Generation via Machine Learning (PCGML) have been used in prior work for generating levels in various games. This paper introduces Content Augmentation and focuses on the subproblem of level inpainting, which involves reconstructing and extending video game levels. Drawing inspiration from image inpainting, we adapt two techniques from this domain to address our specific use case. We present two approaches for level inpainting: an Autoencoder and a U-net. Through a comprehensive case study, we demonstrate their superior performance compared to a baseline method and discuss their relative merits. Furthermore, we provide a practical demonstration of both approaches for the level inpainting task and offer insights into potential directions for future research.