Universidad Nacional de Colombia Medellin Colombia
Abstract:This paper presents a motorcycle classification system for urban scenarios using Convolutional Neural Network (CNN). Significant results on image classification has been achieved using CNNs at the expense of a high computational cost for training with thousands or even millions of examples. Nevertheless, features can be extracted from CNNs already trained. In this work AlexNet, included in the framework CaffeNet, is used to extract features from frames taken on a real urban scenario. The extracted features from the CNN are used to train a support vector machine (SVM) classifier to discriminate motorcycles from other road users. The obtained results show a mean accuracy of 99.40% and 99.29% on a classification task of three and five classes respectively. Further experiments are performed on a validation set of images showing a satisfactory classification.
Abstract:This paper introduces a Deep Learning Convolutional Neural Network model based on Faster-RCNN for motorcycle detection and classification on urban environments. The model is evaluated in occluded scenarios where more than 60% of the vehicles present a degree of occlusion. For training and evaluation, we introduce a new dataset of 7500 annotated images, captured under real traffic scenes, using a drone mounted camera. Several tests were carried out to design the network, achieving promising results of 75% in average precision (AP), even with the high number of occluded motorbikes, the low angle of capture and the moving camera. The model is also evaluated on low occlusions datasets, reaching results of up to 92% in AP.