Abstract:Conversational systems are crucial for human-computer interaction, managing complex dialogues by identifying threads and prioritising responses. This is especially vital in multi-party conversations, where precise identification of threads and strategic response prioritisation ensure efficient dialogue management. To address these challenges an end-to-end model that identifies threads and prioritises their response generation based on the importance was developed, involving a systematic decomposition of the problem into discrete components - thread detection, prioritisation, and performance optimisation which was meticulously analysed and optimised. These refined components seamlessly integrate into a unified framework, in conversational systems. Llama2 7b is used due to its high level of generalisation but the system can be updated with any open source Large Language Model(LLM). The computational capabilities of the Llama2 model was augmented by using fine tuning methods and strategic prompting techniques to optimise the model's performance, reducing computational time and increasing the accuracy of the model. The model achieves up to 10x speed improvement, while generating more coherent results compared to existing models.
Abstract:Parkinson's disease (PD) has been found to affect 1 out of every 1000 people, being more inclined towards the population above 60 years. Leveraging wearable-systems to find accurate biomarkers for diagnosis has become the need of the hour, especially for a neurodegenerative condition like Parkinson's. This work aims at focusing on early-occurring, common symptoms, such as motor and gait related parameters to arrive at a quantitative analysis on the feasibility of an economical and a robust wearable device. A subset of the Parkinson's Progression Markers Initiative (PPMI), PPMI Gait dataset has been utilised for feature-selection after a thorough analysis with various Machine Learning algorithms. Identified influential features has then been used to test real-time data for early detection of Parkinson Syndrome, with a model accuracy of 91.9%