Abstract:Neuromorphic architectures have been introduced as platforms for energy efficient spiking neural network execution. The massive parallelism offered by these architectures has also triggered interest from non-machine learning application domains. In order to lift the barriers to entry for hardware designers and application developers we present RANC: a Reconfigurable Architecture for Neuromorphic Computing, an open-source highly flexible ecosystem that enables rapid experimentation with neuromorphic architectures in both software via C++ simulation and hardware via FPGA emulation. We present the utility of the RANC ecosystem by showing its ability to recreate behavior of the IBM's TrueNorth and validate with direct comparison to IBM's Compass simulation environment and published literature. RANC allows optimizing architectures based on application insights as well as prototyping future neuromorphic architectures that can support new classes of applications entirely. We demonstrate the highly parameterized and configurable nature of RANC by studying the impact of architectural changes on improving application mapping efficiency with quantitative analysis based on Alveo U250 FPGA. We present post routing resource usage and throughput analysis across implementations of Synthetic Aperture Radar classification and Vector Matrix Multiplication applications, and demonstrate a neuromorphic architecture that scales to emulating 259K distinct neurons and 73.3M distinct synapses.
Abstract:Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and executed in low SWaP embedded hardware. ANG accomplishes this by using the training data to determine critical connections between layers before the actual training takes place. Our experiments use a modified LeNet-5 as a baseline neural network that achieves a test accuracy of 98.74% using a total of 61,160 weights. An ANG grown network achieves a test accuracy of 98.80% with only 21,211 weights.