Abstract:Estimation of unsteady flow fields around flight vehicles may improve flow interactions and lead to enhanced vehicle performance. Although flow-field representations can be very high-dimensional, their dynamics can have low-order representations and may be estimated using a few, appropriately placed measurements. This paper presents a sensor-selection framework for the intended application of data-driven, flow-field estimation. This framework combines data-driven modeling, steady-state Kalman Filter design, and a sparsification technique for sequential selection of sensors. This paper also uses the sensor selection framework to design sensor arrays that can perform well across a variety of operating conditions. Flow estimation results on numerical data show that the proposed framework produces arrays that are highly effective at flow-field estimation for the flow behind and an airfoil at a high angle of attack using embedded pressure sensors. Analysis of the flow fields reveals that paths of impinging stagnation points along the airfoil's surface during a shedding period of the flow are highly informative locations for placement of pressure sensors.
Abstract:Dynamic Mode Decomposition (DMD) yields a linear, approximate model of a system's dynamics that is built from data. We seek to reduce the order of this model by identifying a reduced set of modes that best fit the output. We adopt a model selection algorithm from statistics and machine learning known as Least Angle Regression (LARS). We modify LARS to be complex-valued and utilize LARS to select DMD modes. We refer to the resulting algorithm as Least Angle Regression for Dynamic Mode Decomposition (LARS4DMD). Sparsity-Promoting Dynamic Mode Decomposition (DMDSP), a popular mode-selection algorithm, serves as a benchmark for comparison. Numerical results from a Poiseuille flow test problem show that LARS4DMD yields reduced-order models that have comparable performance to DMDSP. LARS4DMD has the added benefit that the regularization weighting parameter required for DMDSP is not needed.