Abstract:Computational functionalism posits that consciousness is a computation. Here we show, perhaps surprisingly, that it cannot be a Turing computation. Rather, computational functionalism implies that consciousness is a novel type of computation that has recently been proposed by Geoffrey Hinton, called mortal computation.
Abstract:We present a categorical formulation of the cognitive frameworks of Predictive Processing and Active Inference, expressed in terms of string diagrams interpreted in a monoidal category with copying and discarding. This includes diagrammatic accounts of generative models, Bayesian updating, perception, planning, active inference, and free energy. In particular we present a diagrammatic derivation of the formula for active inference via free energy minimisation, and establish a compositionality property for free energy, allowing free energy to be applied at all levels of an agent's generative model. Aside from aiming to provide a helpful graphical language for those familiar with active inference, we conversely hope that this article may provide a concise formulation and introduction to the framework.
Abstract:We demonstrate that if consciousness is relevant for the temporal evolution of a system's states -- that is, if it is dynamically relevant -- then AI systems cannot be conscious. That is because AI systems run on CPUs, GPUs, TPUs or other processors which have been designed and verified to adhere to computational dynamics that systematically preclude or suppress deviations. The design and verification preclude or suppress, in particular, potential consciousness-related dynamical effects, so that if consciousness is dynamically relevant, AI systems cannot be conscious.
Abstract:Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et. al., as well as the Quantum IIT introduced by Zanardi et. al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background.