Abstract:Recognising reinforced concrete defects (RCDs) is a crucial element for determining the structural integrity, traffic safety and durability of bridges. However, most of the existing datasets in the RCD domain are derived from a small number of bridges acquired in specific camera poses, lighting conditions and with fixed hardware. These limitations question the usability of models trained on such open-source data in real-world scenarios. We address this problem by testing such models on our "dacl1k" dataset, a highly diverse RCD dataset for multi-label classification based on building inspections including 1,474 images. Thereby, we trained the models on different combinations of open-source data (meta datasets) which were subsequently evaluated both extrinsically and intrinsically. During extrinsic evaluation, we report metrics on dacl1k and the meta datasets. The performance analysis on dacl1k shows practical usability of the meta data, where the best model shows an Exact Match Ratio of 32%. Additionally, we conduct an intrinsic evaluation by clustering the bottleneck features of the best model derived from the extrinsic evaluation in order to find out, if the model has learned distinguishing datasets or the classes (RCDs) which is the aspired goal. The dacl1k dataset and our trained models will be made publicly available, enabling researchers and practitioners to put their models to the real-world test.
Abstract:Reliably identifying reinforced concrete defects (RCDs)plays a crucial role in assessing the structural integrity, traffic safety, and long-term durability of concrete bridges, which represent the most common bridge type worldwide. Nevertheless, available datasets for the recognition of RCDs are small in terms of size and class variety, which questions their usability in real-world scenarios and their role as a benchmark. Our contribution to this problem is "dacl10k", an exceptionally diverse RCD dataset for multi-label semantic segmentation comprising 9,920 images deriving from real-world bridge inspections. dacl10k distinguishes 12 damage classes as well as 6 bridge components that play a key role in the building assessment and recommending actions, such as restoration works, traffic load limitations or bridge closures. In addition, we examine baseline models for dacl10k which are subsequently evaluated. The best model achieves a mean intersection-over-union of 0.42 on the test set. dacl10k, along with our baselines, will be openly accessible to researchers and practitioners, representing the currently biggest dataset regarding number of images and class diversity for semantic segmentation in the bridge inspection domain.
Abstract:In recent years, several companies and researchers have started to tackle the problem of damage recognition within the scope of automated inspection of built structures. While companies are neither willing to publish associated data nor models, researchers are facing the problem of data shortage on one hand and inconsistent dataset splitting with the absence of consistent metrics on the other hand. This leads to incomparable results. Therefore, we introduce the building inspection toolkit -- bikit -- which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition. The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution. For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community. As starting point we provide strong baselines for multi-target classification tasks utilizing extensive hyperparameter search using three transfer learning approaches for state-of-the-art algorithms. The toolkit and the leaderboard are available online.