Abstract:An important use case of next-generation wireless systems is device-edge co-inference, where a semantic task is partitioned between a device and an edge server. The device carries out data collection and partial processing of the data, while the remote server completes the given task based on information received from the device. It is often required that processing and communication be run as efficiently as possible at the device, while more computing resources are available at the edge. To address such scenarios, we introduce a new system solution, termed neuromorphic wireless device-edge co-inference. According to it, the device runs sensing, processing, and communication units using neuromorphic hardware, while the server employs conventional radio and computing technologies. The proposed system is designed using a transmitter-centric information-theoretic criterion that targets a reduction of the communication overhead, while retaining the most relevant information for the end-to-end semantic task of interest. Numerical results on standard data sets validate the proposed architecture, and a preliminary testbed realization is reported.
Abstract:A fog-radio access network (F-RAN) architecture is studied for an Internet-of-Things (IoT) system in which wireless sensors monitor a number of multi-valued events and transmit in the uplink using grant-free random access to multiple edge nodes (ENs). Each EN is connected to a central processor (CP) via a finite-capacity fronthaul link. In contrast to conventional information-agnostic protocols based on separate source-channel (SSC) coding, where each device uses a separate codebook, this paper considers an information-centric approach based on joint source-channel (JSC) coding via a non-orthogonal generalization of type-based multiple access (TBMA). By leveraging the semantics of the observed signals, all sensors measuring the same event share the same codebook (with non-orthogonal codewords), and all such sensors making the same local estimate of the event transmit the same codeword. The F-RAN architecture directly detects the events values without first performing individual decoding for each device. Cloud and edge detection schemes based on Bayesian message passing are designed and trade-offs between cloud and edge processing are assessed.