Abstract:A general-purpose computational homogenization framework is proposed for the nonlinear dynamic analysis of membranes exhibiting complex microscale and/or mesoscale heterogeneity characterized by in-plane periodicity that cannot be effectively treated by a conventional method, such as woven fabrics. The proposed framework is a generalization of the ``Finite Element squared'' method in which a localized portion of the periodic subscale structure -- typically referred to as a Representative Volume Element (RVE) -- is modeled using finite elements. The numerical solution of displacement-driven problems using this model furnishes a mapping between the deformation gradient and the first Piola-Kirchhoff stress tensor. The approach involves the numerical enforcement of the plane stress constraint. Finally, computational tractability is achieved by introducing a regression-based surrogate model to avoid further solution of the RVE model when data sufficient to fit a model capable of delivering adequate approximations is available. For this purpose, a physics-inspired training regimen involving the utilization of our generalized FE$^2$ method to simulate a variety of numerical experiments -- including but not limited to uniaxial, biaxial and shear straining of a material coupon -- is proposed as a practical method for data collection. The proposed framework is demonstrated for a Mars landing application involving the supersonic inflation of an atmospheric aerodynamic decelerator system that includes a parachute canopy made of a woven fabric. Several alternative surrogate models are evaluated including a neural network.