Abstract:Information from neuroimaging examinations (CT, MRI) is increasingly used to support diagnoses of dementia, e.g., Alzheimer's disease. While current clinical practice is mainly based on visual inspection and feature engineering, Deep Learning approaches can be used to automate the analysis and to discover new image-biomarkers. Part-prototype neural networks (PP-NN) are an alternative to standard blackbox models, and have shown promising results in general computer vision. PP-NN's base their reasoning on prototypical image regions that are learned fully unsupervised, and combined with a simple-to-understand decision layer. We present PIPNet3D, a PP-NN for volumetric images. We apply PIPNet3D to the clinical case study of Alzheimer's Disease diagnosis from structural Magnetic Resonance Imaging (sMRI). We assess the quality of prototypes under a systematic evaluation framework, propose new metrics to evaluate brain prototypes and perform an evaluation with domain experts. Our results show that PIPNet3D is an interpretable, compact model for Alzheimer's diagnosis with its reasoning well aligned to medical domain knowledge. Notably, PIPNet3D achieves the same accuracy as its blackbox counterpart; and removing the remaining clinically irrelevant prototypes from its decision process does not decrease predictive performance.