Abstract:We study differentially-private statistics in the fully dynamic continual observation model, where many updates can arrive at each time step and updates to a stream can involve both insertions and deletions of an item. Earlier work (e.g., Jain et al., NeurIPS 2023 for counting distinct elements; Raskhodnikova & Steiner, PODS 2025 for triangle counting with edge updates) reduced the respective cardinality estimation problem to continual counting on the difference stream associated with the true function values on the input stream. In such reductions, a change in the original stream can cause many changes in the difference stream, this poses a challenge for applying private continual counting algorithms to obtain optimal error bounds. We improve the accuracy of several such reductions by studying the associated $\ell_p$-sensitivity vectors of the resulting difference streams and isolating their properties. We demonstrate that our framework gives improved bounds for counting distinct elements, estimating degree histograms, and estimating triangle counts (under a slightly relaxed privacy model), thus offering a general approach to private continual cardinality estimation in streaming settings. Our improved accuracy stems from tight analysis of known factorization mechanisms for the counting matrix in this setting; the key technical challenge is arguing that one can use state-of-the-art factorizations for sensitivity vector sets with the properties we isolate. Empirically and analytically, we demonstrate that our improved error bounds offer a substantial improvement in accuracy for cardinality estimation problems over a large range of parameters.




Abstract:In differential privacy, $\textit{continual observation}$ refers to problems in which we wish to continuously release a function of a dataset that is revealed one element at a time. The challenge is to maintain a good approximation while keeping the combined output over all time steps differentially private. In the special case of $\textit{continual counting}$ we seek to approximate a sum of binary input elements. This problem has received considerable attention lately, in part due to its relevance in implementations of differentially private stochastic gradient descent. $\textit{Factorization mechanisms}$ are the leading approach to continual counting, but the best such mechanisms do not work well in $\textit{streaming}$ settings since they require space proportional to the size of the input. In this paper, we present a simple approach to approximating factorization mechanisms in low space via $\textit{binning}$, where adjacent matrix entries with similar values are changed to be identical in such a way that a matrix-vector product can be maintained in sublinear space. Our approach has provable sublinear space guarantees for a class of lower triangular matrices whose entries are monotonically decreasing away from the diagonal. We show empirically that even with very low space usage we are able to closely match, and sometimes surpass, the performance of asymptotically optimal factorization mechanisms. Recently, and independently of our work, Dvijotham et al. have also suggested an approach to implementing factorization mechanisms in a streaming setting. Their work differs from ours in several respects: It only addresses factorization into $\textit{Toeplitz}$ matrices, only considers $\textit{maximum}$ error, and uses a different technique based on rational function approximation that seems less versatile than our binning approach.




Abstract:In privacy under continual observation we study how to release differentially private estimates based on a dataset that evolves over time. The problem of releasing private prefix sums of $x_1,x_2,x_3,\dots \in\{0,1\}$ (where the value of each $x_i$ is to be private) is particularly well-studied, and a generalized form is used in state-of-the-art methods for private stochastic gradient descent (SGD). The seminal binary mechanism privately releases the first $t$ prefix sums with noise of variance polylogarithmic in $t$. Recently, Henzinger et al. and Denisov et al. showed that it is possible to improve on the binary mechanism in two ways: The variance of the noise can be reduced by a (large) constant factor, and also made more even across time steps. However, their algorithms for generating the noise distribution are not as efficient as one would like in terms of computation time and (in particular) space. We address the efficiency problem by presenting a simple alternative to the binary mechanism in which 1) generating the noise takes constant average time per value, 2) the variance is reduced by a factor about 4 compared to the binary mechanism, and 3) the noise distribution at each step is identical. Empirically, a simple Python implementation of our approach outperforms the running time of the approach of Henzinger et al., as well as an attempt to improve their algorithm using high-performance algorithms for multiplication with Toeplitz matrices.