Abstract:Some defenders of so-called `artificial intelligence' believe that machines can understand language. In particular, S{\o}gaard has argued in this journal for a thesis of this sort, on the basis of the idea (1) that where there is semantics there is also understanding and (2) that machines are not only capable of what he calls `inferential semantics', but even that they can (with the help of inputs from sensors) `learn' referential semantics \parencite{sogaard:2022}. We show that he goes wrong because he pays insufficient attention to the difference between language as used by humans and the sequences of inert of symbols which arise when language is stored on hard drives or in books in libraries.
Abstract:Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial intelligence encouraged by these successes, especially in the domain of language processing. We then show an alternative approach to language-centric AI, in which we identify a role for philosophy.