Abstract:In this paper we describe a new method combining the polynomial neural network and decision tree techniques in order to derive comprehensible classification rules from clinical electroencephalograms (EEGs) recorded from sleeping newborns. These EEGs are heavily corrupted by cardiac, eye movement, muscle and noise artifacts and as a consequence some EEG features are irrelevant to classification problems. Combining the polynomial network and decision tree techniques, we discover comprehensible classification rules whilst also attempting to keep their classification error down. This technique is shown to outperform a number of commonly used machine learning technique applied to automatically recognize artifacts in the sleep EEGs.
Abstract:A new technique is presented developed to learn multi-class concepts from clinical electroencephalograms. A desired concept is represented as a neuronal computational model consisting of the input, hidden, and output neurons. In this model the hidden neurons learn independently to classify the electroencephalogram segments presented by spectral and statistical features. This technique has been applied to the electroencephalogram data recorded from 65 sleeping healthy newborns in order to learn a brain maturation concept of newborns aged between 35 and 51 weeks. The 39399 and 19670 segments from these data have been used for learning and testing the concept, respectively. As a result, the concept has correctly classified 80.1% of the testing segments or 87.7% of the 65 records.
Abstract:In this chapter we describe new neural-network techniques developed for visual mining clinical electroencephalograms (EEGs), the weak electrical potentials invoked by brain activity. These techniques exploit fruitful ideas of Group Method of Data Handling (GMDH). Section 2 briefly describes the standard neural-network techniques which are able to learn well-suited classification modes from data presented by relevant features. Section 3 introduces an evolving cascade neural network technique which adds new input nodes as well as new neurons to the network while the training error decreases. This algorithm is applied to recognize artifacts in the clinical EEGs. Section 4 presents the GMDH-type polynomial networks learnt from data. We applied this technique to distinguish the EEGs recorded from an Alzheimer and a healthy patient as well as recognize EEG artifacts. Section 5 describes the new neural-network technique developed to induce multi-class concepts from data. We used this technique for inducing a 16-class concept from the large-scale clinical EEG data. Finally we discuss perspectives of applying the neural-network techniques to clinical EEGs.
Abstract:We describe a new algorithm for learning multi-class neural-network models from large-scale clinical electroencephalograms (EEGs). This algorithm trains hidden neurons separately to classify all the pairs of classes. To find best pairwise classifiers, our algorithm searches for input variables which are relevant to the classification problem. Despite patient variability and heavily overlapping classes, a 16-class model learnt from EEGs of 65 sleeping newborns correctly classified 80.8% of the training and 80.1% of the testing examples. Additionally, the neural-network model provides a probabilistic interpretation of decisions.
Abstract:We describe a polynomial network technique developed for learning to classify clinical electroencephalograms (EEGs) presented by noisy features. Using an evolutionary strategy implemented within Group Method of Data Handling, we learn classification models which are comprehensively described by sets of short-term polynomials. The polynomial models were learnt to classify the EEGs recorded from Alzheimer and healthy patients and recognize the EEG artifacts. Comparing the performances of our technique and some machine learning methods we conclude that our technique can learn well-suited polynomial models which experts can find easy-to-understand.