Abstract:The growing volume of academic publications poses significant challenges for researchers conducting timely and accurate Systematic Literature Reviews, particularly in fast-evolving fields like artificial intelligence. This growth of academic literature also makes it increasingly difficult for lay people to access scientific knowledge effectively, meaning academic literature is often misrepresented in the popular press and, more broadly, in society. Traditional SLR methods are labor-intensive and error-prone, and they struggle to keep up with the rapid pace of new research. To address these issues, we developed \textit{PROMPTHEUS}: an AI-driven pipeline solution that automates the SLR process using Large Language Models. We aimed to enhance efficiency by reducing the manual workload while maintaining the precision and coherence required for comprehensive literature synthesis. PROMPTHEUS automates key stages of the SLR process, including systematic search, data extraction, topic modeling using BERTopic, and summarization with transformer models. Evaluations conducted across five research domains demonstrate that PROMPTHEUS reduces review time, achieves high precision, and provides coherent topic organization, offering a scalable and effective solution for conducting literature reviews in an increasingly crowded research landscape. In addition, such tools may reduce the increasing mistrust in science by making summarization more accessible to laypeople. The code for this project can be found on the GitHub repository at https://github.com/joaopftorres/PROMPTHEUS.git