Abstract:Early detection of faults is of importance to avoid catastrophic accidents and ensure safe operation of machinery. A novel graph neural network-based fault detection method is proposed to build a bridge between AI and real-world running mechanical systems. First, the vibration signals, which are Euclidean structured data, are converted into graph (non-Euclidean structured data), so that the vibration signals, which are originally independent of each other, are correlated with each other. Second, inputs the dataset together with its corresponding graph into the GNN for training, which contains graphs in each hidden layer of the network, enabling the graph neural network to learn the feature values of itself and its neighbors, and the obtained early features have stronger discriminability. Finally, determines the top-n objects that are difficult to reconstruct in the output layer of the GNN as fault objects. A public datasets of bearings have been used to verify the effectiveness of the proposed method. We find that the proposed method can successfully detect faulty objects that are mixed in the normal object region.
Abstract:Outlier detection is an important topic in machine learning and has been used in a wide range of applications. Outliers are objects that are few in number and deviate from the majority of objects. As a result of these two properties, we show that outliers are susceptible to a mechanism called fluctuation. This article proposes a method called fluctuation-based outlier detection (FBOD) that achieves a low linear time complexity and detects outliers purely based on the concept of fluctuation without employing any distance, density or isolation measure. Fundamentally different from all existing methods. FBOD first converts the Euclidean structure datasets into graphs by using random links, then propagates the feature value according to the connection of the graph. Finally, by comparing the difference between the fluctuation of an object and its neighbors, FBOD determines the object with a larger difference as an outlier. The results of experiments comparing FBOD with seven state-of-the-art algorithms on eight real-world tabular datasets and three video datasets show that FBOD outperforms its competitors in the majority of cases and that FBOD has only 5% of the execution time of the fastest algorithm. The experiment codes are available at: https://github.com/FluctuationOD/Fluctuation-based-Outlier-Detection.