Abstract:The L1-norm of the gradient-magnitude images (GMI), which is the well-known total variation (TV) model, is widely used as regularization in the few views CT reconstruction. As the L1-norm TV regularization is tending to uniformly penalize the image gradient and the low-contrast structures are sometimes over smoothed, we proposed a new algorithm based on the L0-norm of the GMI to deal with the few views problem. To rise to the challenges introduced by the L0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
Abstract:In application of tomography imaging, limited-angle problem is a quite practical and important issue. In this paper, an iterative reprojection-reconstruction (IRR) algorithm using a modified Papoulis-Gerchberg (PG) iterative scheme is developed for reconstruction from limited-angle projections which contain noise. The proposed algorithm has two iterative update processes, one is the extrapolation of unknown data, and the other is the modification of the known noisy observation data. And the algorithm introduces scaling factors to control the two processes, respectively. The convergence of the algorithm is guaranteed, and the method of choosing the scaling factors is given with energy constraints. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.