Abstract:Bayesian optimization (BO) iteratively fits a Gaussian process (GP) surrogate to accumulated evaluations and selects new queries via an acquisition function such as expected improvement (EI). In practice, BO often concentrates evaluations near the current incumbent, causing the surrogate to become overconfident and to understate predictive uncertainty in the region guiding subsequent decisions. We develop a robust GP-based BO via tempered posterior updates, which downweight the likelihood by a power $α\in (0,1]$ to mitigate overconfidence under local misspecification. We establish cumulative regret bounds for tempered BO under a family of generalized improvement rules, including EI, and show that tempering yields strictly sharper worst-case regret guarantees than the standard posterior $(α=1)$, with the most favorable guarantees occurring near the classical EI choice. Motivated by our theoretic findings, we propose a prequential procedure for selecting $α$ online: it decreases $α$ when realized prediction errors exceed model-implied uncertainty and returns $α$ toward one as calibration improves. Empirical results demonstrate that tempering provides a practical yet theoretically grounded tool for stabilizing BO surrogates under localized sampling.




Abstract:Multivariate Item Response Theory (MIRT) is sought-after widely by applied researchers looking for interpretable (sparse) explanations underlying response patterns in questionnaire data. There is, however, an unmet demand for such sparsity discovery tools in practice. Our paper develops a Bayesian platform for binary and ordinal item MIRT which requires minimal tuning and scales well on relatively large datasets due to its parallelizable features. Bayesian methodology for MIRT models has traditionally relied on MCMC simulation, which cannot only be slow in practice, but also often renders exact sparsity recovery impossible without additional thresholding. In this work, we develop a scalable Bayesian EM algorithm to estimate sparse factor loadings from binary and ordinal item responses. We address the seemingly insurmountable problem of unknown latent factor dimensionality with tools from Bayesian nonparametrics which enable estimating the number of factors. Rotations to sparsity through parameter expansion further enhance convergence and interpretability without identifiability constraints. In our simulation study, we show that our method reliably recovers both the factor dimensionality as well as the latent structure on high-dimensional synthetic data even for small samples. We demonstrate the practical usefulness of our approach on two datasets: an educational item response dataset and a quality-of-life measurement dataset. Both demonstrations show that our tool yields interpretable estimates, facilitating interesting discoveries that might otherwise go unnoticed under a pure confirmatory factor analysis setting. We provide an easy-to-use software which is a useful new addition to the MIRT toolkit and which will hopefully serve as the go-to method for practitioners.