Abstract:Previous gait phase detection as convolutional neural network (CNN) based classification task requires cumbersome manual setting of time delay or heavy overlapped sliding windows to accurately classify each phase under different test cases, which is not suitable for streaming Inertial-Measurement-Unit (IMU) sensor data and fails to adapt to different scenarios. This paper presents a segmentation based gait phase detection with only a single six-axis IMU sensor, which can easily adapt to both walking and running at various speeds. The proposed segmentation uses CNN with gait phase aware receptive field setting and IMU oriented processing order, which can fit to high sampling rate of IMU up to 1000Hz for high accuracy and low sampling rate down to 20Hz for real time calculation. The proposed model on the 20Hz sampling rate data can achieve average error of 8.86 ms in swing time, 9.12 ms in stance time and 96.44\% accuracy of gait phase detection and 99.97\% accuracy of stride detection. Its real-time implementation on mobile phone only takes 36 ms for 1 second length of sensor data.
Abstract:Stride length estimation using inertial measurement unit (IMU) sensors is getting popular recently as one representative gait parameter for health care and sports training. The traditional estimation method requires some explicit calibrations and design assumptions. Current deep learning methods suffer from few labeled data problem. To solve above problems, this paper proposes a single convolutional neural network (CNN) model to predict stride length of running and walking and classify the running or walking type per stride. The model trains its pretext task with self-supervised learning on a large unlabeled dataset for feature learning, and its downstream task on the stride length estimation and classification tasks with supervised learning with a small labeled dataset. The proposed model can achieve better average percent error, 4.78\%, on running and walking stride length regression and 99.83\% accuracy on running and walking classification, when compared to the previous approach, 7.44\% on the stride length estimation.
Abstract:Gait phase detection with convolution neural network provides accurate classification but demands high computational cost, which inhibits real time low power on-sensor processing. This paper presents a segmentation based gait phase detection with a width and depth downscaled U-Net like model that only needs 0.5KB model size and 67K operations per second with 95.9% accuracy to be easily fitted into resource limited on sensor microcontroller.