Abstract:This paper investigates the understudied practice of weight sharing (WS) in variational graph autoencoders (VGAE). WS presents both benefits and drawbacks for VGAE model design and node embedding learning, leaving its overall relevance unclear and the question of whether it should be adopted unresolved. We rigorously analyze its implications and, through extensive experiments on a wide range of graphs and VGAE variants, demonstrate that the benefits of WS consistently outweigh its drawbacks. Based on our findings, we recommend WS as an effective approach to optimize, regularize, and simplify VGAE models without significant performance loss.